(출처 : http://visual.ly/big-data)
개인 식별 정보가 제거된 정보의 양이 더 많아질수록
연구(연구 참여자의 동의가 필요한)와 질적 향상(동의 없이 가능한)의 경계가 흐릿해지고 있다.
이 같은 변화에 따라 윤리학자들은 이제 이러한 질문을 하게 되었다
"개개인의 동의를 받는 것이 생명을 구할 수도 있는 혁신을 가로막는 장애물이 되고 있지는 않은가?"
Faden 등은 중환자실에서 중심관 연관 감염을 예방할 수 있는 중재시술에 대한 연구가
연구윤리에 대한 우려때문에 거의 중단되었다고 말하며,
미국에서 이러한 종류의 감염으로 매년 불필요하게 죽어가는 3000명에 대한 우려는 어떻게 된 것이냐며 되묻는다.
궁극적으로는 정보 공유의 장벽을 허무는 방향의 관리 정책의 변화가 필요할 것이다.
의료의 질을 향상시키고 생명을 살릴 기회를 놓쳐서는 안된다.
"각 환자의 경험은 최고의 근거이며, 이들 정보가 합져치면 서로 다른 상황에 따라 어떤 것이 가장 효과가 있는가를 학습할 수 있을 것이다."
TO IMPROVE HEALTH CARE IN THE UNITED STATES, the Institute of Medicine (IOM) has advanced the “learning health care system”—a place where “each patient-care experience naturally reflects the best available evidence, and, in turn, adds seamlessly to learning what works best in different circumstances.”1,2 With increasingly more data being digitally collected in every health care encounter, prospects improve for the integration of clinical care and research.
CERIC - "일상적으로 수집되는 데이터로부터 유용한 지식을 추출하여 의료의 세 가지 목적(개개인에게 최고의 의료 공급하기, 인구집단에게 더 나은 의료 제공하기, 비용 대비 더 높은 가치 창출하기)을 달성할 수 있을 것"
Routinely collected data “provide great potential for extracting useful knowledge to achieve the ‘triple aim’ in health care— better care for individuals, better care for all, and greater value for dollars spent,” according to a recent report from the IOM’s Clinical Effectiveness Research Innovation Collaborative (CERIC).3
However, the recent doubling in use of electronic health records suggests that “big data” will inevitably be applied to health care, potentially improving quality and efficiency.4
Although such developments hold great promise, continued progress cannot be ensured unless the...
(1) cultural and ethical issues related to patient privacy and the
(2) need for individual institutions to maintain some degree of control over the data they collect are addressed.
Ideally all stakeholders, and especially the public, would converge on a consensus to allow more widespread use of data generated in the process of health care when that use is generating knowledge that serves the public good. We see evidence that this is already happening at the local level, when researchers and subjects develop trusting relationships.5 It is also happening in networks of institutions who gather, share, and analyze health care data.6
개인 식별 정보가 제거된 정보의 양이 더 많아질수록 연구(연구 참여자의 동의가 필요한)와 질적 향상(동의 없이 가능한)의 경계가 흐릿해지고 있다.
Now, with large quantities of deidentified health data on individuals being amassed, the boundary between research (which requires the participant’s consent) and quality improvement (which happens constantly without consent) is becoming blurred.
이같은 변화에 따라 윤리학자들은 이제 이러한 질문을 하게 되었다 "개개인의 동의를 받는 것이 생명을 구할 수도 있는 혁신을 가로막는 장애물이 되고 있지는 않은가?"
The change is causing some ethicists to ask: Are requirements for individual consent creating insurmountable barriers to life-saving innovation?
As the CERIC reports,3 many benefits of the use of big data are already evident
Increased availability of routine health care data is also accelerating research.
Studies that once required decades of data collection from selected populations in experimental settings can now be accomplished in just months by mining large data sets, producing more generalizable results
These examples illustrate how the use of health data infrastructure might improve the safety, quality, and efficiency of care. But to benefit from these advances and others not yet imagined, overly burdensome oversight and consent rules for research processes must be avoided.
의사가 어떤 방법이 가장 효과가 좋은지를 모를 때 생길 수 있는 해로움(harm)에 대한 윤리적 고려가 필요하다.
The authors argue that moral consideration must be given to harm that can occur when physicians do not have information needed to determine which approaches work best. The authors point out, for example, that more than half of medical treatments are used without sufficient proof of their effectiveness.
Faden 등은 중환자실에서 중심관 연관 감염을 예방할 수 있는 중재법에 대한 연구가 연구윤리에 대한 우려때문에 거의 중단되었다고 말하며, 미국에서 이러한 종류의 감염으로 매년 불필요하게 죽어가는 3000명에 대한 우려는 어떻게 된 것이냐며 되묻는다.
Faden et al10 describe an intervention preventing central line–associated bloodstream infections in intensive care units that was almost halted because of concerns about research ethics oversight. What about concern and oversight for the 3000 patients who “will die unnecessarily each year in the United States from this type of infection?” Faden et al ask.
궁극적으로는 정보 공유의 장벽을 허무는 방향의 관리 정책의 변화가 필요할 것이다. 의료의 질을 향상시키고 생명을 살릴 기회를 놓쳐서는 안된다.
Ultimately, oversight policies and practices must be developed that will eliminate barriers to sharing information and prevent losing precious opportunities to improve care and save lives.
At the same time, trusted partnerships must be developed among institutions that collect health care data so that they can share it in ways that best serve patients’ needs.
To work, such partnerships must recognize and accommodate each entity’s obligation to protect its patients’ privacy as well as its own business interests. The HMO Research Network (HMORN) is one of many consortia learning to navigate this shared territory.
Through advances in health information technology, the needed tools are available to prevent future harm, eliminate waste, and learn with better certainty which treatments are most effective. This can be accomplished without risking patient privacy or proprietary business interests. By overcoming cultural impediments based on outdated ideas about the collection and use of everyday health care information, it will be possible to fulfill the IOM’s vision of an integrated, comprehensive health care system using routinely collected health care data for continual learning that seamlessly serves individual patients and the public good
Building trust in the power of "big data" research to serve the public good.
Source
Group Health Research Institute, 1730 Minor Ave, Ste 1600, Seattle, WA 98101, USA. larson.e@ghc.org
'Articles (Etc)' 카테고리의 다른 글
호손 효과(Hawthorne effect) (0) | 2013.07.06 |
---|---|
나치 시대 의사들의 잘못에 대한 독일의사협회(German Medical Association)의 사과 (0) | 2013.07.06 |
미래의 의료기술 (Envisioning the Future of Health Technology) - 증폭, 재생, 진단, 원격의료, 생물노인학, 치료 (0) | 2013.07.04 |
의사가 되고자 하는 사람들에게 - 새로운 방식의 인성 면접 (New for Aspiring Doctors, the People Skills Test) (0) | 2013.07.01 |
상관관계(Correlation)분석에서 범위제한(Range Restriction) (0) | 2013.07.01 |